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Expressions are derived for the estimation of the variance and the covariance in the deformation 
electron density Oo/k-oc, for a centrosymmetric crystal structure. The uncertainty in the calculated 
density 0~ depends strongly on the distance to the nuclei. The uncertainty in the observed density 0o 
is fairly constant, except in the vicinity of a symmetry element, where it depends on the same correla- 
tion function as the covariance between observed densities. This correlation function is itself dependent on 
the resolution 2/(2 sin 0) . . . .  the choice of which is of basic importance in any electron density study. The 
variance-covariance matrix may be used in an averaging procedure of electron densities at chemically, 
but not crystallographically, equivalent points. The method is applied to the results of X-ray and neu- 
tron diffraction studies of chromium hexacarbonyl Cr(CO)6. 

Introduction 

An increasing number of crystallographic studies are 
concerned with precise electron density determination. 
Most of them consider the deformation electron den- 
sity AO=Oo/k-o~ where 0o is the unsealed observed elec- 
tron density obtained from X-ray diffraction data, k the 
scale factor relating diffracted amplitudes and structure 
factors, and 0c a density calculated for a model, gen- 
erally consisting of spherical atoms in their ground-state. 
The question of the meaningfulness of the results is 
essential. Three sources of errors may affect AO: (a) the 
errors in the experimental diffracted amplitudes which 
affect 0o; (b) the errors in the parameters on which 
depends the model, and which affect 0~; (c) the error 
in the scale factor k. 

If the three quantities are not statistically correlated, 
the variance of AO is: 

o2(A~) = o2(~o)/k2 + o2(~c) + (~o/ky[o(k)/1,] 2. (1) 

The first term of (1) has been discussed by several 
authors: Cruickshank (1949); Cruickshank & Rollett 
(1953); Coppens & Hamilton (1968), who also con- 
sidered the error in the electron density integrated over 
a parallelepiped; Maslen (1968), who considered prin- 
cipally the effect of phase errors, and also the effect of 
the error in the scale factor. A discussion including all 
three terms was given by Becker, Coppens & Ross 
(1973), who estimated an average variance of AQ 
throughout the crystal. 

One may be interested not only in the variance, but 
also in the covariance between densities at two points 
defined by the vectors ra and rs. The expression cor- 
responding to (1) is: 

coy ( ~ A , ~ )  = c o v  (QoA,Oo,3/ld + c o v  (O~,~c~) 
+ (QoA/k) (eoB/k)[o(k)/kY (2) 

where Aoa, 0o,4,... stand for Ao(rA), Oo(rA),.... 

A knowledge of the covariance is useful if one wants 
to compare electron densities at two points in the same 
crystal. Another important case where the estimation 
of covariances is required is the use &chemical equiv- 
alence to compute an average deformation electron 
density which may give more precise information. The 
complete variance-covariance matrix between the den- 
sities at the equivalent points is needed for a proper 
weighting. Additionally, the discrepancy between the 
equivalent observations provides then a check of the 
individual variance estimations. 

As an example of application of the methods of 
variance--eovariance estimation and of electron density 
averaging, the results of an analysis of chromium hexa- 
carbonyl will be considered. 

Assumptions and approximations 

The following assumptions will be made throughout 
this paper: 

(1) The crystal structure is centrosymmetric and the 
anomalous dispersion effects have been subtracted 
from the observed structure factors Fo, which are there- 
fore all real. We assume furthermore that all signs are 
known without ambiguity, so that a(Fo)=a([FoD. The 
errors arising from the uncertainty in the phase of 
complex structure factors have been discussed by 
Maslen (1968) and by Coppens (1974). 

(2) The correlations between Qo, Qc and k are neg- 
ligible, so that equations (1) and (2) apply. This could 
not be true for two reasons: first, k is often determined 
from Qo and Qc (or from the corresponding structure 
factors), by a scaling procedure; second, systematic 
effects such as thermal diffuse scattering may induce a 
correlation between ~Oo and Qc even if they are deter- 
mined from independent X-ray and neutron diffraction 
experiments (Coppens, 1974). 

(3) There is no correlation between the observed 
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(unscaled) structure factors. This assumption of inde- 
pendent errors is true if the errors are random, but may 
break down if systematic errors are left uncorrected. 

(4) The limit Hmax = (2 sin 0/2)max, in the fraction of 
reciprocal space in which X-ray data are collected, is 
the same in all directions. 

(5) The correlation between positional or thermal 
parameters used in the calculation of ~oo is negligible, 
and their variances are isotropic (except at special posi- 
tions, where the variance is zero in certain directions). 

(6) The effect on ~c of the errors in the spherical 
atom scattering factors (including anomalous scatter- 
ing) may be neglected. 

Uncertainty in the observed structure factors 

The estimation of a(Fo) must be deduced from that of 
~(F2), which has been discussed by several authors 
[see e.g. Abrahams (1974) and McCandlish, Stout & 
Andrews (1975)]. If Fo is normally distributed around 
the mean F: 

aZ(Fo)/a(F2o) = (u z + ½)1/2_ u,  (3) 

where u=F2/a(F 2) [see e.g. Hamilton (1964) p. 34]. 
The assumption of a normal distribution of F 2, which 
is proportional to the actual measure, seems in fact 
better justified, and leads to: 

aZ(Fo)/a(FZo)= lo Xq)(x)dx-[ Io Xl/Z~o(x)dx] z (4) 

with ~0(x)= (2re)-1/2 exp [ - (x -u )2 /2 ] .  The first integral 
of (4) is simply related to the cumulative normal distri- 
bution. The second may be calculated numerically. 

Only for large values of the ratio u do both equations 
(3) and (4) reduce to the familiar equation, obtained 
from a first-order Taylor expansion: 

a(Fo) = a(FZo)/ (2F) . (5) 

The curves corresponding to the three equations are 
represented on Fig. 1. For practical purposes, equation 
(4) may be replaced by the simple scheme: 

¢r(Fo) =a(F2o)/(2Fo) when Fo z > a(F2o) 
cr(Fo)=ax/2(F2o)/2 when Fo 2 < cr(Fo2). (4') 

Variances and covariances in the unsealed observed 
deetron density 

Since the Fo'S are uncorrelated: 

Oe°'4 Oe°B o'2[Fo(a)] (6) 
c°v(0°a'O°n)--~ ~n OFo(I-I)OFo(I-I') 

where the summation is carried over the same set of 
structure factors as in the synthesis of Oo and AO. 
a2(Qo) is obtained from (6) as the particular case where 
ra-=rB. 

This calculation may be quite time-consuming if a 
large set of points is considered, and it is therefore 

useful to derive simplified expressions. In space group 
PT, (6) may be written: 

2 
coy (Ooa,OoB) = ~ ~ a2(Fo) 

1 / 2  

x[cos 2n(ra--rn) .  H + c o s  2rc(ra+rn). H] (7) 

where V is the volume of the crystal unit cell, and 
1 / 2  

means that the summations are carried over one 
hemisphere in reciprocal space, up to a radius Hmax= 
(2 sin 0/2)max. Unless the vector ra + rn is very near to 
a direct lattice translation (which means ra and rn 
nearly related by an inversion centre), the second 
cosine term becomes rapidly negligible as Hmax in- 
creases. Furthermore, if aZ(Fo) does not vary in a sys- 
tematic way with H, the first cosine term may be re- 
placed by the average" 

(cos 2zc(ra-rB). H ) =  3(sin u - u  cos u)/u3=C(u) (8) 

where u = 2 n l r a -  rnlHmax. 
An approximate form of equation (7), is thus" 

2 C(u) ~, aZfFo) (9) cov (QoA, eoB)--~ ~-~ 
1 / 2  

Similarly: 
2 

a2(eo)= ~ ~ a2(Fo), (10) 
1 / 2  

which is the relation derived by Cruickshank (1949). 
Comparing (9) and (10), C is recognized as the correla- 
tion coefficient between Qoa and QoB. The function C(u) 
calculated by (8) is represented on Fig. 2 [curve (a)]. 
As shown below, C(u) is closely related to the resolu- 
tion function due to series termination. 

Other space groups are deduced from PT by adjunc- 
tion of symmetry elements. If the measurements are 
still carried over one hemisphere, the moduli of the 
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Fig. 1. Relation between tr(Fo) and a(F2o), (a) assuming a 

normal distribution of F2o [equation (4) in the text] (b) from 
first-order Taylor expansion [equation (5)] (c) assuming a 
normal distribution of Fo [equation (3)]. Fo is the exPeri- 
mental determination of the true structure factor F. 
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structure factors of equivalent reflexions may be aver- 
aged (after correcting anisotropic effects like absorp- 
tion or extinction), and the errors me reduced accord- 
ingly. As shown by Cruickshank (1949), at a sufficient 
distance from any symmetry element, the variance is 
given by a relation similar to (10)" 

2 
0.2(~oG ) = ~ ~ 0.2(~'-o) (11) 

1/2 

where the summation is taken over the averaged struc- 
ture factors. 

The easiest way to derive the covariance between the 
densities Qoa and Qo~ at two points rA and rB in a crystal 
which belongs to any centrosymmetric space group, is 
to assume that the densities are calculated as for P 1, 
and then averaged over the n symmetry-equivalent 
positions rt, r2, . . . , r~.  This leads to: 

cov (QoA, QoS)----0.Z(0oG) ~ C(2~lral-rB,lema~) (12) 
1=1 

0.2(Qo)--0.2(0o~)[1-1- ~ C ( 2 n l r l - r , l H m a x ) ] .  (13) 
1=2 

C(u) 

0,8 

.0,6 J 

Thus in the vicinity of a symmetry element, even the 
variance of Qo depends on the correlation coefficient C. 
At special positions and for large values of Hmax, 
equation (13) reduces to the relation derived by 
Cruickshank & Rollett (1953). 

Variances and covariances of the calculated electron 
density 

Let P~k be positional or thermal parameters on which 
depends the density Qct, calculated for the atom i. If the 
correlations between the parameters are neglected: 

C~0,,(rA) 30c,(r~) 0.Z(p,k)" (14) 

This relation must be modified when two crystallo- 
graphically equivalent atoms i and j overlap at one of 
the considered positions ra or rn, since P~k and Pjk are 
then completely correlated. 

Relation (14) is simplified when the errors are iso- 
tropic, as assumed at the beginning. It is easily shown 
that this condition is fulfilled when, in orthonormal 
axes: 

0.2(Xl)  = 0.2(X2) = 0.2(X3) = 0.2 

d ( u l ~ )  = 0.~(u,2) = ~ ( u ~ )  = 20 .~(u~)  = 2 d ( u ~ )  

= 20"2(U2a) = 0.2. (15) 

If this is true, it may also be shown that the 0.2(Xk) 
and a2(Ukz) are invariant in any change of the ortho- 
normal axes. The simplest form for the derivatives 
cOQdO p is obtained if they are referred to the principal 
axes of the thermal-motion tensor, so that the non- 
diagonal terms Ukt vanish (but not, of course, the cor- 
responding derivatives). 
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Fig. 2. Correlation coefficient in observed electron densities: 
cov (0oA, 0oR) = C(2nlrA - r,[Hmax)a(OoA)a(oo~), (a) C(u) = 
3(sinu-ucosu)/u 3 (b) 'true' correlation coefficient in 
Cr(CO)6. The points represent values calculated from equa- 
tion (6). 

Weighted average of electron density 

Let rl, r2, • • . , r m  be chemically (but not crystallograph- 
ically) equivalent points. The best average AQ of the 
deformation electron densities AQ~ may be obtained by 
a standard least-squares procedure (Hamilton, 1964, 
p. 124). The weight-matrix P is the inverse of the 
variance-covariance matrix, determined as above" 

(P -1 )u=cov  (A~,Aoj). (16) 

The weighted average and its estimated variance are" 

where" 

I=I /=i I 1 

0.z(AO-)=s2 / ~, ~, P,j, (18) 
l .1 

sZ=[ ~ ~ AQ~AQjP~j-A-Q a ~ ~ Pu]/(m-1). (19) 
J l J 

s is the standard deviation of an observation of unit 
weight and should on average be equal to 1. A large 
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departure from 1 would indicate either a bad estimate 
of the variances and covariances of the Ao~'s, or the 
inadequacy of the assumption of chemical equivalence. 

Error due to the scale factor 

This part of the error has not been considered in the 
averaging procedure above, since it affects in the same 
manner the density at equivalent points and cannot be 
reduced by averaging. It has been discussed recently by 
Stevens & Coppens (1975), who showed that with the 
present techniques, the scale factor could be measured 
with an accuracy of about 1%. The corresponding un- 
certainty in Qo is thus [0o[/100 in the most favorable 
cases, which may be very large in the vicinity of the 
nuclei, especially those of heavy atoms. 

However, it should be noted that this may not be 
too dramatic when the electron densities A0A and AOB 
at two points in the crystal are compared. Since the 
errors due to k are completely correlated, the corre- 
sponding part of the standard deviation of the differ- 
ence AOA-- AOB is : 

ak(Zt --Z10.)=[l oA--Qo.[/kl (20) 
If the total densities OoA and 008 are nearly the same, 

this term is very small. The situation is of course quite 
different for other problems as, for example, in the 
determination of the integrated charge of an atom. 

Example of application 

The averaging procedure described above was applied 
to the experimental data of chromium hexacarbonyl, 
Cr(CO)6. The free molecule belongs to the symmetry 
group Oh, but only a mirror plane is retained in the 
crystal (see Fig. 3). The molecular symmetry is still 
very close to Oh and an averaging procedure thus seems 
justified. Neutron diffraction data (Jost, Rees & Yelon, 
1975) and X-ray diffraction data were collected at 
liquid-nitrogen temperature. All X-ray reflexions, up 
to Hmax= 1.52 A -1, were used in the computation of 
deformation densities. The electronic structure of this 
complex will be discussed elsewhere (Rees & Mitschler, 
1976); only the discussion of the achieved precision is 
relevant here. 

The variance-covariance estimation by the approx- 
imate equations (12) and (13) was compared to the 
exact calculation (6). From (11), at0o~) is 0.066 e A -3. 
The results of the exact calculation for a number of 
points far from symmetry elements, were equal to this 
value within about 30 %. This agrees with the model 
calculations of Coppens & Hamilton (1968), but in 
contrast to these calculations, no apparent relation 
between the fluctuations of a(Oo) and the nuclear posi- 
tions was evidenced. Covariances, as calculated by (6), 
were of importance only between points closer than 
about 0.7 A (for a value of Hmax of 1"52 A-~). For 
larger distances, the magnitude of the correlation co- 
efficient was always less than 0.2. The covariances cal- 

culated by (12) were found to be correct provided that 
the theoretical value of the correlation coefficient C 
[equation (8)] was substituted by a somewhat steeper 
function, also represented on Fig. 2 [curve (b)]. This 
probably indicates the breakdown of the hypothesis, 
that a(Fo) does not vary systematically with H. In fact, 
since the structure factors decrease for larger values of 
H, a(Fo) is also, on average, a decreasing function. 

To calculate the derivatives of equation (14), cylin- 
drical symmetry of the thermal motion around the 
Cr-C-O bond axes was assumed. The calculated den- 
sity of each independent atom was expressed as a 
Fourier series in a cubic lattice (a* =0.15 A-z), with 
axes along the three bond directions. Relations (15) 
were found to be approximately verified, except of 
course for those parameters which have a value fixed 
by the crystal symmetry, a(Oc) behaves very differently 
from a(Oo)" it is large in the vicinity of a nucleus and 
decreases rapidly when the distance to the nucleus in- 
creases. The covariance between the calculated densi- 
ties at two points not too far from the same nucleus 
may be large, even for a relatively large distance be- 
tween the two points. 

The average deformation density AO was calculated 
in a plane defined by two perpendicular Cr -C-O 
bonds. As shown on Fig. 3, each value of AO results 
from the averaging over 12 chemically equivalent but 
crystallographically independent points. 

The root-mean-square value of s, as calculated by 
(19), was 1.09. This indicates the correctness of the 
assumption of chemical equivalence and of the estima- 
tion of variances and covariances. 

AO is shown on Fig. 4(a); G(Ao)=[GZ(Oo)/k2"b 
G2(0c)] 1/2 in one plane before averaging, is shown on 

x 

z 
0(4) ] ~ C(4)~ -- 

~ 0(3)~ 

"0 

C(2) 

0(2) 

Fig. 3. Chemically equivalent points in Cr(CO)6. m is the 
crystallographic mirror plane. 
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Fig. 4(b) (note the larger value of a in the vicinity of 
the mirror plane), and may be compared to a(Ao) of 
Fig. 4(c). The improvement in precision due to aver- 
aging is obvious. When all correlations are small, the 

..... , 0 / ; ; :  > 
/ o "::.,o.;, ?x\,',.?, ) ( 

-',':':h', ) ~ ~'~ ~ :,:.;;",', ; /  
..,,~,.,,, ( ..~.,~" ',., ~ ~ ,, ;;, " _..., \ ~ ~  
:s-, : . . . . . .  ".=o-~ ,,.,,-..;L, ~ 

6 

(a) 

cT c t31 0 (3) 

(b) 

C O 

(c) 

C, C 6 

(d) 

Fig. 4. Deformation electron density AO = oo/k-Oc in Cr(CO)6 
at a resolution 3./(2 sin 0)m,x = 0"66 A, (a) Average deforma- 
tion density AO. Contour intervals at 0.05 e A -a, negative 
contours dotted. (b) Standard deviation a(Ao) (not in- 
cluding the error in the scale factor) before averaging. Cr 
and C(1) are on the mirror plane. Contour intervals at 
0.025 e A -3. (c) Standard deviation a(do) (not including the 
error in the scale factor) after averaging. Contours as in (b). 
(d) (oo/k)/100. The contribution of F(000) is omitted. 
Contours up to 0.4 e A -3 are represented, with the same 
interval as in (b). The height of the peak at the chromium 
nucleus is 1.21 e .~-3. 10o/kl/100 is approximately the 
standard deviation of the error in AO due to the imprecision 
in the scale factor. 

standard deviation is divided by 1/12:0.019 e/~-3 in- 
stead of 0.066 e A -3, far from the nuclei. The improve- 
ment is of course less in the regions of strong correla- 
tions, i.e. near to the bond axes or to their bisector. 

An estimation of the error due to the scale factor is 
seen on Fig. 4(d). No experimental determination of 
the scale factor was attempted for the X-ray data of 
Cr(CO)6. From the scaling of observed and calculated 
structure factors with two different methods, a value 
of ~ seemed a reasonable estimation of a(k)/k. 
Fig. 4(d) shows a map of Qo/lOOk. In this map, the 
contribution of F(000) is omitted, since this term is not 
included in the calculation of AQ. Note that Qo/lOOk is 
the quantity which is added to A~o of Fig. 4(a) when the 
scale factor is reduced by 1%. 

Remark on the effect of  series termination 

All the formulae derived so far for the estimation of 
variances and covariances show the essential impor- 
tance of the reciprocal-sphere limit//max----(2 sin 0//~)max , 
in the synthesis of electron density. When more and 
more terms are added in the summation, the variance 
increases indefinitely. This has been considered as an 
absurdity, but the paradox is only apparent. It should 
be kept in mind that the determined electron density 
(which may be Qo, Qc or A~) is in fact the convolution 
QHmax of the corresponding density for complete resolu- 
tion, ~oo by a resolution function depending on//max: 

QHmax(r)= I Q~(r--t)gHmax(t)dZt " (21) 

gHmax(t) is the Fourier transform of the step function 
GHmax(I-I), equal to 1 inside the sphere of radius Hmax, 
and to 0 outside. It is spherically symmetric, and may 
be expressed as a function of u=2ntHmax : 

gHmax(U) = VmaxC(U ) (22) 

where Vmax is the volume of the reciprocal sphere and 
C(u) is the theoretical correlation coefficient given by 
equation (8). gnmax/Vmax is thus represented by the 
curve of Fig. 2(a). This is not surprising, since the co- 
variance in Qo is precisely due to the convolution (21). 

The choice of Hma x must result from a compromise 
between the best possible resolution and the lowest 
possible imprecision. For an optimal value of Hmax, 
the derivatives c%r[QHmax(r)]/c3Hmax and ~]OHmax(r)l/OHmax 
should be approximately equal: when Hmax becomes 
larger than the optimal value, the first derivative be- 
comes larger than the second. The gain in resolution 
is then overcompensated by the increase in errors, and 
one adds essentially background fluctuations to the 
density function. But since both derivatives depend on 
r, the optimal value of Hma x would depend on the 
region which is considered in the crystal: it would be 
larger for regions of high curvature than for regions of 
low curvature, so that the defnition of a unique op- 
timal value of Hma x is difficult. Anyhow, the necessity 
should be emphasized of a clear specification of Hma x 
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or, as for example in protein structure work, of the 
resolution 2/(2 sin 0)max, whenever experimental elec- 
tron density maps are published. 

I wish to thank Professor P. Coppens for his interest 
and helpful suggestions. 
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X-ray Diffraction from a 6H Structure Containing Intrinsic Faults 
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The theory of X-ray diffraction from a one-dimensionally disordered 6H structure (ABCACB) con- 
taining a random distribution of 14 unique intrinsic fault configurations has been developed. An exact 
expression for the diffracted intensity has been derived in terms of the coefficients of the characteristic 
equation and the boundary conditions by applying Holloway's method of analytic solution. This ex- 
pression is then used to obtain the diffracted intensity in reciprocal space as a function of the 14 fault 
probabilities, assuming these to be small. Observable diffraction effects like peak broadening, peak 
shift and the change in the peak intensity are discussed for different single-crystal reflexions. A unique 
evaluation of all 14 fault probabilities is not possible from an experimental measurement of diffraction 
effects. However, it is often possible to neglect certain fault probabilities on the basis of physical con- 
siderations such as the stacking-fault energy and the mechanism of formation of faults in the 6H 
structure. 

Introduction 

Recently we have shown (Pandey & Krishna, 1975a, 
b, c, d) that all the observed polytype structures in lead 
iodide, cadmium iodide and silicon carbide can result 
from spiral growth round a single screw dislocation 
created in a basic structure containing random stack- 
ing faults. The basic structures, which are the more 
commonly found small-period modifications, are dif- 
ferent in different materials (Verma & Krishna, 1966). 
Thus the basic structure in PbI2 is type 2H(ATB); those 
in CdI2 are 2H(Ag, B) and 4H(A~,BCo~B) while those in 
SiC are 6H(A~BflCTAo~C?Bfl), 
15R(Ao~BflC),BflAo~BflC~,Ao~CTBflC?Ao~BflAo~CT) and 
4H(A~BflQ, Bfl). The range of interaction, as defined 
by Jagodzinski (1949a), extends to two, three, four and 
six layers for the 2H, 4H, 6H and 15R structures re- 
spectively. Stacking-fault energy in all these materials 
is very low (Stevens, 1972; Prasad & Srivastava, 1970) 
and the basic structures frequently contain a random 
distribution of stacking faults. This produces diffuse 
streaks connecting X-ray diffraction maxima that orig- 

inate from reciprocal-lattice rows parallel to c*. The 
concentration of stacking faults varies considerably 
from one crystal to another but the average value of 
the fault-order degree, as measured experimentally, is 
reported to be 0.12 for SiC and 0.26 for CdI2 (Jagod- 
zinski, 1954; Jain & Trigunayat, 1970). The theory of 
X-ray diffraction from randomly faulted close-packed 
structures with a range of interaction up to three 
layers has been developed by several workers (Wilson, 
1942; Hendricks & Teller, 1942; Jagodzinski, 1949a, b; 
Paterson, 1952; Gevers, 1954; Kakinoki & Komura,  
1952; Kaklnokl, 1967; Johnson, 1963; Holloway, 
1969; Prasad & Lele, 1971). 

Gevers (1954) has developed the theory of X-ray 
diffraction from close-packed structures with a four- 
layer range of interaction. Lele (1974a, b, c) has ex- 
tended the theory to a stage where the fault probabilities 
are directly related to the experimentally observable 
diffraction effects for the structures 6H, 9R and 12R. 
We have shown in an earlier publication that there are 
18 possible intrinsic fault configurations that can occur 
in the 6H structure (Pandey & Krishna, 1975c, d). Of 


